By Topic

Sub-1 V CMOS large capacitive-load driver circuit using direct bootstrap technique for low-voltage CMOS VLSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, P.C. ; Inst. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Kuo, J.B.

A novel sub-1 V CMOS large capacitive-load driver circuit using a direct bootstrap technique for low-voltage CMOS VLSI is reported. For a supply voltage of 1 V, the CMOS large capacitive-load driver circuit using the direct bootstrap technique shows a 3.3 times improvement in switching speed in driving a capacitive load of 2 pF compared to the conventional bootstrapped CMOS driver circuit using an indirect bootstrap technique. Even for a supply voltage of 0.8 V, this CMOS large capacitive load driver circuit using the direct bootstrap technique is still advantageous

Published in:

Electronics Letters  (Volume:38 ,  Issue: 6 )