By Topic

Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Suri, J.S. ; MR Clinical Sci. Div., Philips Med. Syst. Inc., Cleveland, OH, USA ; Kecheng Liu ; Singh, S. ; Laxminarayan, S.N.
more authors

The class of geometric deformable models, also known as level sets, has brought tremendous impact to medical imagery due to its capability of topology preservation and fast shape recovery. In an effort to facilitate a clear and full understanding of these powerful state-of-the-art applied mathematical tools, the paper is an attempt to explore these geometric methods, their implementations and integration of regularizers to improve the robustness of these topologically independent propagating curves/surfaces. The paper first presents the origination of level sets, followed by the taxonomy of level sets. We then derive the fundamental equation of curve/surface evolution and zero-level curves/surfaces. The paper then focuses on the first core class of level sets, known as "level sets without regularizers." This class presents five prototypes: gradient, edge, area-minimization, curvature-dependent and application driven. The next section is devoted to second core class of level sets, known as "level sets with regularizers." In this class, we present four kinds: clustering-based, Bayesian bidirectional classifier-based, shape-based and coupled constrained-based. An entire section is dedicated to optimization and quantification techniques for shape recovery when used in the level set framework. Finally, the paper concludes with 22 general merits and four demerits on level sets and the future of level sets in medical image segmentation. We present applications of level sets to complex shapes like the human cortex acquired via MRI for neurological image analysis.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:6 ,  Issue: 1 )