By Topic

Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fan Wang ; Motorola Inc., Arlington Heights, IL, USA ; V. Balakrishnan

We present a robust recursive Kalman filtering algorithm that addresses estimation problems that arise in linear time-varying systems with stochastic parametric uncertainties. The filter has a one-step predictor-corrector structure and minimizes an upper bound of the mean square estimation error at each step, with the minimization reduced to a convex optimization problem based on linear matrix inequalities. The algorithm is shown to converge when the system is mean square stable and the state space matrices are time invariant. A numerical example consisting of equalizer design for a communication channel demonstrates that our algorithm offers considerable improvement in performance when compared with conventional Kalman filtering techniques

Published in:

IEEE Transactions on Signal Processing  (Volume:50 ,  Issue: 4 )