By Topic

Improved modeling and design of microphones using radio frequency detection with capacitive micromachined ultrasonic transducers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hansen, S.T. ; Edward L. Ginzton Lab., Stanford Univ., CA, USA ; Ergun, A.S. ; Khuri-Yakub, B.T.

Broadband acoustic sensing, over several decades of frequency, has traditionally been difficult to achieve. An alternative approach to conventional condenser microphones is to use capacitive micromachined ultrasonic transducer (CMUT) membranes with a sensitive radio frequency (RF) detection method. Since the resonant frequency of a typical CMUT membrane is several megahertz, the membrane response to acoustic frequencies below resonance, from DC to several hundred kilohertz, is constant. This paper presents the theory, modeling, and sensitivity predictions of the RF detection method. Electrical thermal noise is now incorporated in the model and ultimately limits the sensitivity. In addition, we present experimental results showing the flat frequency response, from 0.1 Hz to 100 kHz, of a microphone using RF detection. Present measurements demonstrate a sensitivity of 53 dB/Pa/Hz, though improvements to the design are expected to achieve sensitivities approaching 100 dB/Pa/Hz

Published in:

Ultrasonics Symposium, 2001 IEEE  (Volume:2 )

Date of Conference:

2001