By Topic

Weighted fuzzy reasoning using weighted fuzzy Petri nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shyi-Ming Chen ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan

This paper presents a Weighted Fuzzy Petri Net model (WFPN) and proposes a weighted fuzzy reasoning algorithm for rule-based systems based on Weighted Fuzzy Petri Nets. The fuzzy production rules in the knowledge base of a rule-based system are modeled by Weighted Fuzzy Petri Nets, where the truth values of the propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by fuzzy numbers. Furthermore, the weights of the propositions appearing in the rules are also represented by fuzzy numbers. The proposed weighted fuzzy reasoning algorithm can allow the rule-based systems to perform fuzzy reasoning in a more flexible and more intelligent manner

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:14 ,  Issue: 2 )