By Topic

Fuzzy support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chun-Fu Lin ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taiwan ; Sheng-De Wang

A support vector machine (SVM) learns the decision surface from two distinct classes of the input points. In many applications, each input point may not be fully assigned to one of these two classes. In this paper, we apply a fuzzy membership to each input point and reformulate the SVMs such that different input points can make different contributions to the learning of decision surface. We call the proposed method fuzzy SVMs (FSVMs)

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 2 )