By Topic

Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bohte, S.M. ; Netherlands Center for Comput. Sci. & Math., Amsterdam, Netherlands ; La Poutre, H. ; Kok, J.N.

We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multilayer network can induce hierarchical clustering. We develop a temporal encoding of continuously valued data to obtain adjustable clustering capacity and precision with an efficient use of neurons: input variables are encoded in a population code by neurons with graded and overlapping sensitivity profiles. We also discuss methods for enhancing scale-sensitivity of the network and show how the induced synchronization of neurons within early RBF layers allows for the subsequent detection of complex clusters

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 2 )