By Topic

Focused local learning with wavelet neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rying, E.A. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Bilbro, G.L. ; Jye-Chyi Lu

A novel objective function is presented that incorporates both local and global errors as well as model parsimony in the construction of wavelet neural networks. Two methods are presented to assist in the minimization of this objective function, especially the local error term. First, during network initialization, a locally adaptive grid is utilized to include candidate wavelet basis functions whose local support addresses the local error of the local feature set. This set can be either user-defined or determined using information derived from the wavelet transform modulus maxima representation. Next, during the network construction, a new selection procedure based on a subspace projection operator is presented to help focus the selection of wavelet basis functions to reduce the local error. Simulation results demonstrate the effectiveness of these methodologies in minimizing local and global error while maintaining model parsimony and incurring a minimal increase on computational complexity

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 2 )