By Topic

Stability analysis of discrete-time recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barabanov, N.E. ; Dept. of Software Eng., St. Petersburg Electrotechnical Univ., Russia ; Prokhorov, D.V.

We address the problem of global Lyapunov stability of discrete-time recurrent neural networks (RNNs) in the unforced (unperturbed) setting. It is assumed that network weights are fixed to some values, for example, those attained after training. Based on classical results of the theory of absolute stability, we propose a new approach for the stability analysis of RNNs with sector-type monotone nonlinearities and nonzero biases. We devise a simple state-space transformation to convert the original RNN equations to a form suitable for our stability analysis. We then present appropriate linear matrix inequalities (LMIs) to be solved to determine whether the system under study is globally exponentially stable. Unlike previous treatments, our approach readily permits one to account for non-zero biases usually present in RNNs for improved approximation capabilities. We show how recent results of others on the stability analysis of RNNs can be interpreted as special cases within our approach. We illustrate how to use our approach with examples. Though illustrated on the stability analysis of recurrent multilayer perceptrons, the approach proposed can also be applied to other forms of time-lagged RNNs

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 2 )