Cart (Loading....) | Create Account
Close category search window
 

Differentially coherent detection of binary partial response continuous phase modulation with index 0.5

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kaleh, G.K. ; Ecole Nat. Superieure des Telecommun., Paris, France

The performance of binary partial response continuous phase modulation (with index 0.5) using a differentially coherent receiver depends on the choice of the receiver filter. An optimum MMSE design method for this filter is presented. The receiver filter is equivalent to the cascade of a matched filter and an equalizer in order to reduce inherent intersymbol interference (ISI). It is shown that performance degradation with respect to that of the differential binary phase shift keying (BPSK) system is due to inherent ISI contained in the signal and also to noise enhancement and correlation caused by the receiver filter. The bit error probability on the Gaussian channel is calculated by assuming that ISI is Gaussian. The Gaussian minimum shift keying (MSK) signal is used for illustration

Published in:

Communications, IEEE Transactions on  (Volume:39 ,  Issue: 9 )

Date of Publication:

Sep 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.