By Topic

A multiple perspective spectral approach to object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bonneau, R.J. ; Radar Signal Process. Branch, Air Force Res. Lab, Rome, NY, USA

Many applications for detection of objects such as video analysis require that candidate objects be observed over a range of perspectives in 3 dimensional space. As a result we must have a robust model and detection process for these objects in order to accurately detect them through a range of geometric transformations. In order to keep our detection process computationally efficient, we use a compact multiresolution model to represent the range of geometric transformations possible in the object to be detected. Additionally, we form an integrated likelihood ratio detection statistic to optimize the detection performance over the entire space of targets being examined. To demonstrate the performance of this algorithm we apply our results to a compressed video sequence and show the improvement of our integrated three dimensional model as a function of model order

Published in:

Applied Imagery Pattern Recognition Workshop, AIPR 2001 30th

Date of Conference:

1-12 Oct 2001