By Topic

Cardiac artifact subspace identification and elimination in cognitive MEG data using time-delayed decorrelation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. H. Sander ; Phys. Tech. Bundesanstalt, Berlin, Germany ; G. Wubbeler ; A. Lueschow ; G. Curio
more authors

To reduce physiological artifacts in magnetoencephalographic (MEG) and electroencephalographic recordings, a number of methods have been applied in the past such as principal component analysis, signal-space projection, regression using secondary information, and independent component analysis. This method has become popular as it does not have constraints such as orthogonality between artifact and signal or the need for a priori information. Applying the time-delayed decorrelation algorithm to raw data from a visual stimulation MEG experiment, we show that several of the independent components can be attributed to the cardiac artifact. Calculating an average cardiac activity shows that physiologically different excitation states of the heart produce similar field distributions in the MEG sensor system. This is equivalent to differing spectral properties of cardiac field distributions in the raw data. As a consequence, the algorithm combines, e.g., the R peak and the T wave of the cardiac cycle into a single component and the one-to-one assignment of each independent component with a physiological source is not justified in this case. To improve the signal quality of visually evoked fields, the multidimensional cardiac artifact subspace is suppressed from the data. To assess the preservation of the evoked signal after artifact suppression, a geometrical and a temporal measure are introduced. The suppression of cardiac and a wave artifacts allows, in our experimental setting, the reduction of the number of epochs to one half while preserving the visually evoked signal.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:49 ,  Issue: 4 )