By Topic

Text identification in complex background using SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Datong Chen ; Dalle Molle Inst. for Perceptual Artificial Intelligence, Switzerland ; Bourlard, H. ; Thiran, J.

The paper presents a fast and robust algorithm to identify text in image or video frames with complex backgrounds and compression effects. The algorithm first extracts the candidate text line on the basis of edge analysis, baseline location and heuristic constraints. Support Vector Machine (SVM) is then used to identify text line from the candidates in edge-based distance map feature space. Experiments based on a large amount of images and video frames from different sources showed the advantages of this algorithm compared to conventional methods in both identification quality and computation time.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

2001