By Topic

Parametric representations for nonlinear modeling of visual data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhu, Ying ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Comaniciu, D. ; Ramesh, V. ; Schwartz, Stuart

Accurate characterization of data distribution is of significant importance for vision problems. In many situations, multivariate visual data often spread into a nonlinear manifold in the high-dimensional space, which makes traditional linear modeling techniques ineffective. This paper proposes a generic nonlinear modeling scheme based on parametric data representations. We build a compact representation for the visual data using a set of parameterized basis (wavelet) functions, where the parameters are randomized to characterize the nonlinear structure of the data distribution. Meanwhile, a new progressive density approximation scheme is proposed to obtain an accurate estimate of the probability density, which imposes discrimination power on the model. Both synthetic and real image data are used to demonstrate the strength of our modeling scheme.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference: