Cart (Loading....) | Create Account
Close category search window
 

A pure learning approach to background-invariant object recognition using pedagogical support vector learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Roobaert, D. ; Computational Vision & Active Perception Lab., R. Inst. of Technol., Stockholm, Sweden ; Zillich, M. ; Eklundh, J.-O.

Pursuing the goals of absolute simplicity of a detection/recognition system, a pure learning approach to background-invariance and visual 3D object detection/recognition is proposed. The approach relies on learning from examples only, and does not encode any domain knowledge (e.g. in the form of intermediate representations, or by solving segmentation or correspondence problems). To make the pure learning approach practically feasible, we propose the BW training method for teaching an object recognition system background-invariance. The method consist of pedagogically training the system, once with a black background and once with a white background. The method is formulated within the framework of support vector learning. Evaluation is performed with the Columbia Image (COIL) database, that is extended with different classes of cluttered backgrounds. Using this pure learning approach, a system is proposed that is able to perform 3D object detection/recognition successfully in real-world scenes, with varying illuminations and backgrounds. The system is able to perform this task in real-time.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.