By Topic

A Bayesian approach to digital matting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yung-Yu Chuang ; Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA ; Curless, B. ; Salesin, D.H. ; Szeliski, R.

This paper proposes a new Bayesian framework for solving the matting problem, i.e. extracting a foreground element from a background image by estimating an opacity for each pixel of the foreground element. Our approach models both the foreground and background color distributions with spatially-varying sets of Gaussians, and assumes a fractional blending of the foreground and background colors to produce the final output. It then uses a maximum-likelihood criterion to estimate the optimal opacity, foreground and background simultaneously. In addition to providing a principled approach to the matting problem, our algorithm effectively handles objects with intricate boundaries, such as hair strands and fur, and provides an improvement over existing techniques for these difficult cases.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference: