By Topic

A fast Green's function method for the analysis of IDT's for acousto-optical devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
O. A. Peverini ; Dipt. di Elettronica, CNR, Torino, Italy ; R. Orta ; R. Tascone

Surface acoustic wave (SAW) interdigital transducers are key components in X-Y LiNbO/sub 3/ acousto-optical (A-O) devices. SAW interdigital transducers (IDT's) on this substrate exhibit a high spurious resonance that may reduce the A-O efficiency. In this paper we present a detailed analysis of X-Y LiNbO/sub 3/ IDT's based on a fast Green's function method (GFM). In order to correctly evaluate the spurious effects on IDT's performance, we also considered bulk terms of the Green's function. When the GFM is applied to IDT's with general topology and over a wide frequency range, the required computation time can reach quickly unacceptable values for long IDT structures. We developed a new model order reduction technique based on the singular value decomposition (SVD) for the fast generation of the IDT's frequency response. Numerical results for different configurations of X-Y LiNbO/sub 3/ IDT's are in good agreement with measured data and a correct interpretation of the spurious resonance is reported. It is pointed out that bulk wave excitation may be a serious limitation in the design of efficient, wide band IDT's for A-O devices.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:49 ,  Issue: 3 )