Cart (Loading....) | Create Account
Close category search window
 

Near optimum universal belief propagation based decoding of low-density parity check codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinghu Chen ; Dept. of Electr. Eng., Hawaii Univ., Honolulu, HI, USA ; Fossorier, M.P.C.

In this paper, we propose a belief-propagation (BP)-based decoding algorithm which utilizes normalization to improve the accuracy of the soft values delivered by a previously proposed simplified BP-based algorithm. The normalization factors can be obtained not only by simulation, but also, importantly, theoretically. This new BP-based algorithm is much simpler to implement than BP decoding as it requires only additions of the normalized received values and is universal, i.e., the decoding is independent of the channel characteristics. Some simulation results are given, which show this new decoding approach can achieve an error performance very close to that of BP on the additive white Gaussian noise channel, especially for low-density parity check (LDPC) codes whose check sums have large weights. The principle of normalization can also be used to improve the performance of the max-log-MAP algorithm in turbo decoding, and some coding gain can be achieved if the code length is long enough

Published in:

Communications, IEEE Transactions on  (Volume:50 ,  Issue: 3 )

Date of Publication:

Mar 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.