Cart (Loading....) | Create Account
Close category search window
 

Modeling and design of flexure jointed Stewart platforms for control purposes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
McInroy, J.E. ; Dept. of Electr. Eng., Wyoming Univ., Laramie, WY, USA

A number of researchers have been investigating the use of Stewart platforms (or hexapods) for precision applications including machining, vibration isolation and precise pointing. To avoid friction and backlash, these hexapods often employ flexure joints. This does eliminate nonlinear friction and backlash, but adds linear spring/damper dynamics. In addition, since the motion is so accurate, base and/or payload vibrations become significant disturbances to suppress. This paper develops guidelines for designing the flexure joints to facilitate closed-loop control. In addition, since base accelerations are typically the dominant disturbance, their effect is derived. Unlike most prior hexapod dynamic formulations, the model is experimentally verified

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Mar 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.