By Topic

The training of neural classifiers with condensed datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Choi, S.H. ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, UK ; Rockett, P.

In this paper we apply a k-nearest-neighbor-based data condensing algorithm to the training set of multilayer perceptron neural networks. By removing the overlapping data and retaining only training exemplars adjacent to the decision boundary we are able to significantly speed the network training time while achieving an undegraded misclassification rate compared to a network trained on the unedited training set. We report results on a range of synthetic and real datasets that indicate that a training speed-up of an order of magnitude is typical

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:32 ,  Issue: 2 )