Cart (Loading....) | Create Account
Close category search window
 

A recurrent fuzzy-neural model for dynamic system identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mastorocostas, P.A. ; Dept. of Electr. & Comput. Eng., Aristotelian Univ. of Thessaloniki, Greece ; Theocharis, J.B.

This paper presents a fuzzy modeling approach for identification of dynamic systems. In particular, a new fuzzy model, the Dynamic Fuzzy Neural Network (DFNN), consisting of recurrent TSK rules, is developed. The premise and defuzzification parts are static while the consequent parts of the fuzzy rules are recurrent neural networks with internal feedback and time delay synapses. The network is trained by means of a novel learning algorithm, named Dynamic-Fuzzy Neural Constrained Optimization Method (D-FUNCOM), based on the concept of constrained optimization. The proposed algorithm is general since it can be applied to locally as well as fully recurrent networks, regardless of their structures. An adaptation mechanism of the maximum parameter change is presented as well. The proposed dynamic model, equipped with the learning algorithm, is applied to several temporal problems, including modeling of a NARMA process and the noise cancellation problem. Performance comparisons are conducted with a series of static and dynamic systems and some existing recurrent fuzzy models. Simulation results show that DFNN compares favorably with its competing rivals and thus it can be considered for efficient system identification

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:32 ,  Issue: 2 )

Date of Publication:

Apr 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.