By Topic

Analysis and modeling of impulsive noise in broad-band powerline communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Zimmermann ; Inst. of Ind. Inf. Syst., Karlsruhe Univ., Germany ; K. Dostert

Contrary to many other communication channels, the powerline channel does not represent an additive white Gaussian noise environment. In the frequency range from several hundred kilohertz up to 20 MHz, it is mostly dominated by narrow-band interference and impulsive noise. In particular, the impulsive noise introduces significant time variance into the powerline channel. Spectral analysis and time-domain analysis of impulsive noise give some figures of the power spectral density as well as distributions of amplitude, impulse width, and "interarrival" times in typical powerline scenarios. Furthermore, the impulse rate and the disturbance ratio of the scenarios are examined. Finally, a statistical model of the time behavior of random impulsive noise based on a partitioned Markov chain is developed, which is suitable for implementation in computer-based communication system simulations

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:44 ,  Issue: 1 )