By Topic

A region-based MRF model for unsupervised segmentation of moving objects in image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. Tsaig ; Dept. of Comput. Sci., Tel-Aviv Univ., Israel ; A. Averbuch

This paper addresses the problem of segmentation of moving objects in image sequences, which is of key importance in content-based applications. We transform the problem into a graph labeling problem over a region adjacency graph (RAG), by introducing a Markov random field (MRF) model based on spatio-temporal information. The initial partition is obtained by fast, color-based watershed segmentation. The motion of each region is estimated and validated in a hierarchical framework. A dynamic memory, based on object tracking, is incorporated into the segmentation process to maintain temporal coherence. The performance of the algorithm is evaluated on several real-world image sequences.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

2001