By Topic

Robust point feature matching in projective space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Chen, G.Q. ; Human-Computer-Interface Labs., STMicroelectronics, San Diego, CA, USA

We present a robust method for matching point features across a set of images under full perspective projection. An expectation-maximization-like algorithm is developed to build an optimal potential match set (PMS) between each consecutive pair of views, by iteratively maximizing a heuristic objective function. All two-view matches are combined to form an M-view potential match set (MPMS) with a low contamination rate. Outliers in MPMS are removed incorporating the least-median-of-squares technique with projective reconstruction. The current work extends previous ones in two- or three-view matching, or under affine camera projection. Results on real imagery demonstrate the validity of the proposed method.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

2001