Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Tracking and modeling non-rigid objects with rank constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Torresani, L. ; Dept. of Comput. Sci., Stanford Univ., CA, USA ; Yang, D.B. ; Alexander, E.J. ; Bregler, C.

This paper presents a novel solution for flow-based tracking and 3D reconstruction of deforming objects in monocular image sequences. A non-rigid 3D object undergoing rotation and deformation can be effectively approximated using a linear combination of 3D basis shapes. This puts a bound on the rank of the tracking matrix. The rank constraint is used to achieve robust and precise low-level optical flow estimation without prior knowledge of the 3D shape of the object. The bound on the rank is also exploited to handle occlusion at the tracking level leading to the possibility of recovering the complete trajectories of occluded/disoccluded points. Following the same low-rank principle, the resulting flow matrix can be factored to get the 3D pose, configuration coefficients, and 3D basis shapes. The flow matrix is factored in an iterative manner, looping between solving for pose, configuration, and basis shapes. The flow-based tracking is applied to several video sequences and provides the input to the 3D non-rigid reconstruction task. Additional results on synthetic data and comparisons to ground truth complete the experiments.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

2001