By Topic

A framework for sensor planning and control with applications to vision guided multi-robot systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Spletzer, J.R. ; GRASP Lab., Pennsylvania Univ., Philadelphia, PA, USA ; Taylor, C.J.

The paper presents an approach to the problem of controlling the configuration of a team of mobile agents equipped with cameras so as to optimize the quality of the estimates derived from their measurements. The issue of optimizing the robots' configuration is particularly important in the context of teams equipped with vision sensors since most estimation schemes of interest will involve some form of triangulation. We provide a theoretical framework for tackling the sensor planning problem and a practical computational strategy, inspired by work on particle filtering, for implementing the approach. The ideas have been demonstrated both in simulation and on actual robotic platforms. The results indicate that the framework is able to solve fairly difficult sensor planning problems online without requiring excessive amounts of computational resources.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

2001