By Topic

Linear image coding for regression and classification using the tensor-rank principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shashua, A. ; Sch. of Comput. Sci. & Eng., Hebrew Univ., Jerusalem, Israel ; Levin, A.

Given a collection of images (matrices) representing a "class" of objects we present a method for extracting the commonalities of the image space directly from the matrix representations (rather than from the vectorized representation which one would normally do in a PCA approach, for example). The general idea is to consider the collection of matrices as a tensor and to look for an approximation of its tensor-rank. The tensor-rank approximation is designed such that the SVD decomposition emerges in the special case where all the input matrices are the repeatition of a single matrix. We evaluate the coding technique both in terms of regression, i.e., the efficiency of the technique for functional approximation, and classification. We find that for regression the tensor-rank coding, as a dimensionality reduction technique, significantly outperforms other techniques like PCA. As for classification, the tensor-rank coding is at is best when the number of training examples is very small.

Published in:

Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

2001