By Topic

High frequency scattering from trihedral corner reflectors and other benchmark targets: SBR versus experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
J. Baldauf ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; S. -W. Lee ; L. Lin ; S. -K. Jeng
more authors

A general method for calculating the radar cross section (RCS) from a three-dimensional target is described. The target is first constructed by using a solid-geometry-modeling computer-aided design (CAD) package. Following the shooting and bouncing ray (SBR) method, a very dense grid of rays is launched from the incident direction toward the target. Each ray is traced according to the geometrical optics theory including the effect of ray tube divergence, polarization, and material reflection coefficient. At the point where the ray exits the target, a physical optics-type integration is performed to obtain the scattered far fields. This method is tested using several simple examples involving interaction among plates, cylinders, and spheres. The theoretical results are generally in good agreement with measured data

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:39 ,  Issue: 9 )