By Topic

Estimating the fundamental matrix via constrained least-squares: a convex approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chesi, G. ; Dipt. di Ingegneria dell''Informazlone, Siena Univ., Italy ; Garulli, A. ; Vicino, A. ; Cipolla, R.

In this paper, a new method for the estimation of the fundamental matrix from point correspondences in stereo vision is presented. The minimization of the algebraic error is performed while taking explicitly into account the rank-two constraint on the fundamental matrix. It is shown how this nonconvex optimization problem can be solved avoiding local minima by using recently developed convexification techniques. The obtained estimate of the fundamental matrix turns out to be more accurate than the one provided by the linear criterion, where the rank constraint of the matrix is imposed after its computation by setting the smallest singular value to zero. This suggests that the proposed estimate can be used to initialize nonlinear criteria, such as the distance to epipolar lines and the gradient criterion, in order to obtain a more accurate estimate of the fundamental matrix

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 3 )