By Topic

Writer adaptation for online handwriting recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. D. Connell ; Agilent Technol., Palo Alto, CA, USA ; A. K. Jain

Writer-adaptation is the process of converting a writer-independent handwriting recognition system into a writer-dependent system. It can greatly increasing recognition accuracy, given adequate writer models. The limited amount of data a writer provides during training constrains the models' complexity. We show how appropriate use of writer-independent models is important for the adaptation. Our approach uses writer-independent writing style models (lexemes) to identify the styles present in a particular writer's training data. These models are then updated using the writer's data. Lexemes in the writer's data for which an inadequate number of training examples is available are replaced with the writer-independent models. We demonstrate the feasibility of this approach on both isolated handwritten character recognition and unconstrained word recognition tasks. Our results show an average reduction in error rate of 16.3 percent for lowercase characters as compared against representing each of the writer's character classes with a single model. In addition, an average error rate reduction of 9.2 percent is shown on handwritten words using only a small amount of data for adaptation

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:24 ,  Issue: 3 )