Cart (Loading....) | Create Account
Close category search window

Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhu, Z.Q. ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, UK ; Howe, D. ; Chan, C.C.

A general analytical technique predicts the magnetic field distribution in brushless permanent magnet machines equipped with surface-mounted magnets. It accounts for the effects of both the magnets and the stator windings. The technique is based on two-dimensional models in polar coordinates and solves the governing Laplacian/quasi-Poissonian field equations in the airgap/magnet regions without any assumption regarding the relative recoil permeability of the magnets. The analysis works for both internal and external rotor motor topologies, and either radial or parallel magnetized magnets, as well as for overlapping and nonoverlapping stator windings. The paper validates results of the analytical models by finite-element analyses, for both slotless and slotted motors

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.