Cart (Loading....) | Create Account
Close category search window
 

A fast algorithm for high-accuracy frequency measurement: application to ultrasonic Doppler sonar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Susaki, H. ; Res. Lab., Furuno Electr. Co. Ltd., Nishinomiya, Japan

In an attempt to investigate the technical feasibility of a CW Doppler sonar, we have examined a method of measuring low velocities with a high-velocity resolution, or frequency resolution, by use of a simple circuit configuration employing digital signal processing technique. The following discussion presents the results of the investigation. In the measuring method described, the fast Fourier transform (FFT) of undersampled data is calculated and the Doppler shift is obtained by searching for a peak frequency of the power spectrum. To achieve the intended frequency resolution of 1 Hz by FFT operation, measurement of data for a minimum measuring period of 1 s is essential. If the sampling frequency is set to 50 kHz, the number of samples obtained during the minimum measuring period of I s would amount to 50000. This is not practical in light of the time required for the FFT operation. To overcome this problem, our new measuring method employs a decimation technique for reducing the number of samples down to 1024 while maintaining a frequency resolution of about 1 Hz. This paper describes how the processing time can be drastically reduced to about 1/300th compared to the conventional technique by a combination of complex exponential functions, filtering and decimation, and thereby indicates the possibility of real-time CW Doppler data processing

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:27 ,  Issue: 1 )

Date of Publication:

Jan 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.