By Topic

A 62-ns 16-Mb CMOS EPROM with voltage stress relaxation technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
N. Tomita ; Toshiba Corp., Kawasaki, Japan ; N. Ohtsuka ; J. Miyamoto ; K. Imamiya
more authors

To meet the increasing demand for higher-density and faster EPROMs, a 16-Mb CMOS EPROM has been developed based on 0.6-μm N-well CMOS technology. In scaled EPROMs, it is important to guarantee device reliability under high-voltage operation during programming. By employing internal programming-voltage reduction and new stress relaxation circuits, it is possible to keep an external programming voltage Vpp of 12.5 V. The device achieves a 62-ns access time with a 12-mA operating current. A sense-line equalization and data-out latching scheme, made possible by address transition detection (ATD), and a bit-line bias circuit with two types of depletion load led to the fast access time with high noise immunity. This 16-Mb EPROM has pin compatibility with a standard 16-Mb mask-programmable ROM (MROM) and is operative in either word-wide or byte-wide READ mode. Cell size and chip size are 2.2 μm×1.75 μm and 7.18 mm×17.39 mm, respectively

Published in:

IEEE Journal of Solid-State Circuits  (Volume:26 ,  Issue: 11 )