By Topic

MEMS: the path to large optical crossconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chu, P.B. ; Tellium Inc., Oceanport, NJ, USA ; Lee, C.D. ; Sangtae Park

Continuous growth in demand for optical network capacity and the sudden maturation of WDM technologies have fueled the development of long-haul optical network systems that transport tens to hundreds of wavelengths per fiber, with each wavelength modulated at 10 Gb/s or more. Micro-electromechanical systems devices are recognized to be the enabling technologies to build the next-generation cost-effective and reliable high-capacity optical crossconnects. While the promises of automatically reconfigurable networks and bit-rate-independent photonic switching are bright, the endeavor to develop a high-port-count MEMS-based OXC involves overcoming challenges in MEMS design and fabrication, optical packaging, and mirror control. Due to the interdependence of many design parameters, manufacturing tolerances, and performance requirements, careful trade-offs must be made in MEMS device design as well as system design. We provide an overview of the market demand, various design trade-offs, and multidisciplinary system considerations for building reliable and manufacturable large MEMS-based OXCs

Published in:

Communications Magazine, IEEE  (Volume:40 ,  Issue: 3 )