By Topic

Stability analysis and observer design for neutral delay systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zidong Wang ; Sch. of Math. & Inf. Sci., Coventry Univ., UK ; J. Lam ; K. J. Burnham

This paper deals with the observer design problem for a class of linear delay systems of the neutral-type. The problem addressed is that of designing a full-order observer that guarantees the exponential stability of the error dynamic system. An effective algebraic matrix equation approach is developed to solve this problem. In particular, both the observer analysis and design problems are investigated. By using the singular value decomposition technique and the generalized inverse theory, sufficient conditions for a neutral-type delay system to be exponentially stable are first established. Then, an explicit expression of the desired observers is derived in terms of some free parameters. Furthermore, an illustrative example is used to demonstrate the validity of the proposed design procedure

Published in:

IEEE Transactions on Automatic Control  (Volume:47 ,  Issue: 3 )