By Topic

On the optimal design of an automotive lateral controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fenton, R.E. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Selim, I.

An optimization approach is used to design a velocity-adaptive, lateral controller to meet requirements pertaining to lateral-position, tracking accuracy, robustness, and ride comfort. The resulting controller, which is nonlinear with velocity, requires full-state feedback and thus an observer is included. The observer/controller compensator was implemented using a 16-bit microcomputer and evaluated in a laboratory study wherein vehicle lateral dynamics were simulated on an analog computer. Excellent lateral control, i.e. close tracking (with absolute value of lateral-position error below 0.024 m in curve tracking), good sensitivity to disturbance forces, and probable ride comfort resulted. The selected control algorithm was realized using some 5% of the available computation time, thus allowing the microcomputer to be used for other control functions and vital-function monitoring

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:37 ,  Issue: 2 )