Cart (Loading....) | Create Account
Close category search window
 

Design, optimization, and fabrication of side-illuminated p-i-n photodetectors with high responsivity and high alignment tolerance for 1.3and 1.55-μm wavelength use

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Magnin, V. ; Inst. d''Electronique et de Microelectronique, Villeneuve d''Ascq, France ; Giraudet, L. ; Harari, J. ; Decobert, J.
more authors

We describe the design, optimization and fabrication of side-illuminated p-i-n photodetectors, grown on InP substrate, suitable for surface hybrid integration in low-cost modules. The targeted functionalities of these photodetectors were a very high responsivity at 1.3- and 1.55-μm wavelengths and quasi-independent on the optical polarization, and had a high alignment tolerance. Moreover, in order to avoid any reliability problem, the principle of evanescent coupling was adopted. Two photodetectors were optimized, fabricated, and tested; the first was for classical cleaved fiber, and the second was for lensed fiber. Because the considered epitaxial structures were complicated to optimize, the method of the genetic algorithm was used, associated with a beam propagation method (BPM). The photodetectors are based on multimode diluted waveguides, which are promising structures in the field of optoelectronics and integrated optics. Starting from the presented comparisons between experimental and theoretical results, the interest of the design method is discussed and the complete performances of newly fabricated devices are presented. The aspect of the cutoff frequency is also considered

Published in:

Lightwave Technology, Journal of  (Volume:20 ,  Issue: 3 )

Date of Publication:

Mar 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.