Cart (Loading....) | Create Account
Close category search window
 

Image recovery using partitioned-separable paraboloidal surrogate coordinate ascent algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sotthivirat, S. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Fessler, J.A.

Iterative coordinate ascent algorithms have been shown to be useful for image recovery, but are poorly suited to parallel computing due to their sequential nature. This paper presents a new fast converging parallelizable algorithm for image recovery that can be applied to a very broad class of objective functions. This method is based on paraboloidal surrogate functions and a concavity technique. The paraboloidal surrogates simplify the optimization problem. The idea of the concavity technique is to partition pixels into subsets that can be updated in parallel to reduce the computation time. For fast convergence, pixels within each subset are updated sequentially using a coordinate ascent algorithm. The proposed algorithm is guaranteed to monotonically increase the objective function and intrinsically accommodates nonnegativity constraints. A global convergence proof is summarized. Simulation results show that the proposed algorithm requires less elapsed time for convergence than iterative coordinate ascent algorithms. With four parallel processors, the proposed algorithm yields a speedup factor of 3.77 relative to single processor coordinate ascent algorithms for a three-dimensional (3-D) confocal image restoration problem

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 3 )

Date of Publication:

Mar 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.