By Topic

A physical model-based approach to detecting sky in photographic images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiebo Luo ; Res. Labs., Eastman Kodak Co., Rochester, NY, USA ; S. P. Etz

Sky is among the most important subject matter frequently seen in photographic images. We propose a model-based approach consisting of color classification, region extraction, and physics-motivated sky signature validation. First, the color classification is performed by a multilayer backpropagation neural network trained in a bootstrapping fashion to generate a belief map of sky color. Next, the region extraction algorithm automatically determines an appropriate threshold for the sky color belief map and extracts connected components. Finally, the sky signature validation algorithm determines the orientation of a candidate sky region, classifies one-dimensional (1-D) traces within the region based on a physics-motivated model, and computes the sky belief of the region by the percentage of traces that fit the physics-based sky trace model. A small-scale, yet rigorous test has been conducted to evaluate the algorithm performance. With approximately half of the images containing blue sky regions, the detection rate is 96% with a false positive rate of 2% on a per image basis

Published in:

IEEE Transactions on Image Processing  (Volume:11 ,  Issue: 3 )