By Topic

Generating software test data by evolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michael, C.C. ; Cigital Corp., Dulles, VA, USA ; McGraw, Gary ; Schatz, M.A.

This paper discusses the use of genetic algorithms (GAs) for automatic software test data generation. This research extends previous work on dynamic test data generation where the problem of test data generation is reduced to one of minimizing a function. In our work, the function is minimized by using one of two genetic algorithms in place of the local minimization techniques used in earlier research. We describe the implementation of our GA-based system and examine the effectiveness of this approach on a number of programs, one of which is significantly larger than those for which results have previously been reported in the literature. We also examine the effect of program complexity on the test data generation problem by executing our system on a number of synthetic programs that have varying complexities

Published in:

Software Engineering, IEEE Transactions on  (Volume:27 ,  Issue: 12 )