By Topic

Multiphase stabilization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gouda, M.G. ; Dept. of Comput. Sci., Texas Univ., Austin, TX, USA

We generalize the concept of stabilization of computing systems. According to this generalization, the actions of a system S are partitioned into n partitions, called phase 1 through phase n. In this case, system S is said to be n-stabilizing to a state predicate Q iff S has state predicates P.0, ..., P.n such that P.0=true, P.n=Q, and the following two conditions hold for every j, 1⩽j⩽n. First, if S starts at a state satisfying P.(j-1) and if the only actions of S that are allowed to be executed are those of phase j or less, then S will reach a state satisfying P.j. Second, the set of states satisfying P.j is closed under any execution of the actions of phase j or less. By choosing n=1, this generalization degenerates to the traditional definition of stabilization. We discuss three advantages of this generalization over the traditional definition. First, this generalization captures many stabilization properties of systems that are traditionally considered nonstabilizing. Second, verifying stabilization when n>1 is usually easier than when n=1. Third, this generalization suggests a new method of fault recovery, called multiphase recovery

Published in:

Software Engineering, IEEE Transactions on  (Volume:28 ,  Issue: 2 )