By Topic

12.5 GHz spaced 1.28 Tb/s (512-channel x 2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Suzuki, H. ; Network Innovation Labs., NTT Corp., Kanagawa, Japan ; Fujiwara, M. ; Takachio, N. ; Iwatsuki, K.
more authors

We achieve a 512-channel super-dense wavelength-division-multiplexing (WDM) transmission with a 12.5 GHz channel spacing over 320 km (80 km/spl times/4) of standard single-mode fiber in the C+L-bands. Optical carrier supply modules, which are based on a flattened sideband generation scheme, are applied to generate the 512 wavelengths from only 64 distributed-feedback laser diodes with a frequency spacing of 100 GHz. Arrayed-waveguide gratings with a 12.5 GHz spacing are used in this super-dense WDM experiment.

Published in:

Photonics Technology Letters, IEEE  (Volume:14 ,  Issue: 3 )