Cart (Loading....) | Create Account
Close category search window

Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gupta, K.K. ; Kansai Adv. Res. Center, Commun. Res. Lab., Hyogo, Japan ; Onodera, N. ; Abedin, K.S. ; Hyodo, M.

We demonstrate pulse repetition frequency multiplication in AM mode-locked fiber ring lasers using optical filtering realized via an intracavity fiber Fabry-Perot filter (FFP) and show that the generated optical pulses are highly stable in amplitude noise and timing jitter. A 3.477-GHz optical pulse train is generated using a modulation signal of 869.284 MHz, a fourth subharmonic multiple of the 3.48-GHz free spectral range of FFP. The generated optical pulses exhibit a high degree of pulse stability in terms of a large suppression of supermode noise, a low amplitude noise of 0.93 %, and a timing jitter of 1.2 ps.

Published in:

Photonics Technology Letters, IEEE  (Volume:14 ,  Issue: 3 )

Date of Publication:

March 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.