By Topic

QoS-aware multicast routing for the Internet: the design and evaluation of QoSMIC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shuqian Yan ; ANDA Networks, San Jose, CA, USA ; M. Faloutsos ; A. Banerjea

One of the main problems of the current Internet infrastructure is its inability to provide services at consistent quality-of-service (QoS) levels. At the same time, many emerging Internet applications, such as teleeducation, and teleconferencing, require multicast protocols that will provide the necessary QoS. In this paper, we propose QoSMIC, a multicast routing protocol for the Internet, that provides QoS-sensitive paths in a scalable, resource-efficient, and flexible way. QoSMIC differs from the previous protocols in that it identifies multiple paths and selects the one that can provide the required QoS. Two other key advantages of QoSMIC are its flexibility and adaptivity. First, the distribution tree does not have to be rooted at a preselected core router. Second, we can tradeoff between efficiency metrics depending on our needs; for example, we can tradeoff routing efficiency for a reduction in the control messages. Extensive simulations show that our protocol improves the resources utilization and the end-to-end performance compared to the current protocols. Specifically, our protocol reduces the call blocking probability by a factor of six and reduces the end-to-end delay by as much as 90% compared to the PIM protocol

Published in:

IEEE/ACM Transactions on Networking  (Volume:10 ,  Issue: 1 )