By Topic

Proportional differentiated services: delay differentiation and packet scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dovrolis, C. ; Dept. of Comput. & Inf. Sci., Delaware Univ., Newark, DE, USA ; Stiliadis, D. ; Ramanathan, P.

The proportional differentiation model provides the network operator with the 'tuning knobs' for adjusting the per-hop quality-of-service (QoS) ratios between classes, independent of the class loads. This paper applies the proportional model in the differentiation of queueing delays, and investigates appropriate packet scheduling mechanisms. Starting from the proportional delay differentiation (PDD) model, we derive the average queueing delay in each class, show the dynamics of the class delays under the PDD constraints, and state the conditions in which the PDD model is feasible. The feasibility model of the model can be determined from the average delays that result with the strict priorities scheduler. We then focus on scheduling mechanisms that can implement the PDD model, when it is feasible to do so. The proportional average delay (PAD) scheduler meets the PDD constraints, when they are feasible, but it exhibits a pathological behavior in short timescales. The waiting time priority (WTP) scheduler, on the other hand, approximates the PDD model closely, even in the short timescales of a few packet departures, but only in heavy load conditions. PAD and WTP serve as motivation for the third scheduler, called hybrid proportional delay (HPD). HPD approximates the PDD model closely, when the model is feasible, independent of the class load distribution. Also, HPD provides predictable delay differentiation even in short timescales

Published in:

Networking, IEEE/ACM Transactions on  (Volume:10 ,  Issue: 1 )