By Topic

An efficient algorithm for finding multiple DC solutions based on the SPICE-oriented Newton homotopy method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ushida, A. ; Dept. of Electr. & Electron. Eng., Tokushima Univ., Japan ; Yamagami, Y. ; Nishio, Y. ; Kinouchi, I.
more authors

It is a very important, but difficult, task to calculate the multiple dc solutions in circuit simulations. In this paper, we show a very simple SFICE-oriented Newton homotopy method which can efficiently find out the multiple de solutions. In the paper, we show our solution curve-tracing algorithm based on the arc-length method and the Newton homotopy method. We will also prove an important theorem about how many variables should be chosen to implement our algorithm. It verifies that our simulator can be efficiently applied even if the circuit scales are relatively large. In Section III, we show that our Newton homotopy method is implemented by the transient analysis of SPICE. Thus, we do not need to formulate a troublesome circuit equation or the Jacobian matrix. Finally, applying our method to solve many important benchmark problems, all the solutions for the transistor circuits could be found on each homotopy path. Thus, our simulator can be efficiently applied to calculate the multiple dc solutions and perhaps all the solutions

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 3 )