By Topic

Optimal tight frames and quantum measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. C. Eldar ; Res. Lab. of Electron., MIT, Cambridge, MA, USA ; G. D. Forney

Tight frames and rank-one quantum measurements are shown to be intimately related. In fact, the family of normalized tight frames for the space in which a quantum-mechanical system lies is precisely the family of rank-one generalized quantum measurements on that space. Using this relationship, frame-theoretical analogs of various quantum-mechanical concepts and results are developed. The analog of a least-squares quantum measurement is a tight frame that is closest in a least-squares sense to a given set of vectors. The least-squares tight frame is found for both the case in which the scaling of the frame is specified (constrained least-squares frame (CLSF)) and the case in which the scaling is chosen to minimize the least-squares error (unconstrained least-squares frame (ULSF)). The well-known canonical frame is shown to be proportional to the ULSF and to coincide with the CLSF with a certain scaling

Published in:

IEEE Transactions on Information Theory  (Volume:48 ,  Issue: 3 )