By Topic

Graph-based evolutionary design of arithmetic circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dingjun Chen ; Dept. of Syst. Inf. Sci., Tohoku Univ., Sendai, Japan ; Aoki, T. ; Homma, N. ; Terasaki, T.
more authors

We present an efficient graph-based evolutionary optimization technique, called evolutionary graph generation (EGG), and the proposed approach is applied to the design of combinational and sequential arithmetic circuits based on parallel counter-tree architecture. The fundamental idea of EGG is to employ general circuit graphs as individuals and manipulate the circuit graphs directly using new evolutionary graph operations without encoding the graphs into other indirect representations, such as the bit strings used in genetic algorithm (GA) proposed by Holland (1992) and trees used in genetic programming (GP) proposed by Koza et al. (1997). In this paper, the EGG system is applied to the design of constant-coefficient multipliers and the design of bit-serial data-parallel adders. The results demonstrate the potential capability of EGG to solve the practical design problems for arithmetic circuits with limited knowledge of computer arithmetic algorithms. The proposed EGG system can help to simplify and speed up the process of designing arithmetic circuits and can produce better solutions to the given problem

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 1 )