By Topic

Foveated video quality assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sanghoon Lee ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Pattichis, M.S. ; Bovik, A.C.

Most image and video compression algorithms that have been proposed to improve picture quality relative to compression efficiency have either been designed based on objective criteria such as signal-to-noise-ratio (SNR) or have been evaluated, post-design, against competing methods using an objective sample measure. However, existing quantitative design criteria and numerical measurements of image and video quality both fail to adequately capture those attributes deemed important by the human visual system, except, perhaps, at very low error rates. We present a framework for assessing the quality of and determining the efficiency of foveated and compressed images and video streams. Image foveation is a process of nonuniform sampling that accords with the acquisition of visual information at the human retina. Foveated image/video compression algorithms seek to exploit this reduction of sensed information by nonuniformly reducing the resolution of the visual data. We develop unique algorithms for assessing the quality of foveated image/video data using a model of human visual response. We demonstrate these concepts on foveated, compressed video streams using modified (foveated) versions of H.263 that are standard-compliant. We rind that quality vs. compression is enhanced considerably by the foveation approach

Published in:

Multimedia, IEEE Transactions on  (Volume:4 ,  Issue: 1 )