By Topic

Efficient parallel execution of irregular recursive programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prechelt, L. ; abaXX Technol., Stuttgart, Germany ; Hanssgen, S.U.

Programs whose parallelism stems from multiple recursion form an interesting subclass of parallel programs with many practical applications. The highly irregular shape of many recursion trees makes it difficult to obtain good load balancing with small overhead. We present a system, called REAPAR, that executes recursive C programs in parallel on SMP machines. Based on data from a single profiling run of the program, REAPAR selects a load-balancing strategy that is both effective and efficient and it generates parallel code implementing that strategy. The performance obtained by REAPAR on a diverse set of benchmarks matches that published for much more complex systems requiring high-level problem-oriented explicitly parallel constructs. A case study even found REAPAR to be competitive to handwritten (low-level, machine-oriented) thread-parallel code

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:13 ,  Issue: 2 )